LRBinner¶
Description¶
LRBinner is a long-read binning tool that overcomes several limitations of our previous work MetaBCC-LR (ISMB 2020). The tool uses variational auto-encoders to bin error-prone long reads using coverage and composition.
Environment Modules¶
Run module spider lrbinner
to find out what environment modules are available for this application.
Environment Variables¶
- HPC_LRBINNER_DIR - installation directory
- HPC_LRBINNER_BIN - executable directory
Job Script Examples¶
Below is a job script used for testing application installation:
#!/bin/bash
#SBATCH --job-name=lrbinner_0.1_test
#SBATCH --mail-type=NONE
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=32
#SBATCH --mem-per-cpu=4gb
#SBATCH --gpus=1
#SBATCH --time=24:00:00
#SBATCH --output=lrbinner_0.1_test.log
echo "Setting up test environment..."
TEST_PWD=/data/apps/tests/lrbinner/0.1
TEST_DATADIR=${TEST_PWD}/example_data
TEST_WORKDIR=${TEST_PWD}/test_output
cd ${TEST_PWD}
module load lrbinner/0.1
# Remove any previous test results and re-create a working directory
if [ -d ${TEST_WORKDIR} ]; then rm -rf ${TEST_WORKDIR}/; fi
mkdir ${TEST_WORKDIR}
echo "Starting test run at $(date) on $(hostname)..."
# Based on https://github.com/anuradhawick/LRBinner#test-run-data
###################################
LRBinner \
reads \
-r ${TEST_DATADIR}/reads.fasta \
-bc 10 \
-bs 32 \
-o ${TEST_WORKDIR}/lrb \
--cuda \
-mbs 5000 \
--ae-dims 4 \
--ae-epochs 200 \
-bit 0 \
-t ${SLURM_JOB_CPUS_PER_NODE:-4}
# Evaluate results:
eval.py \
--truth ${TEST_DATADIR}/ids.txt \
--bins ${TEST_WORKDIR}/lrb/bins.txt \
--print
###################################
echo "Test complete at $(date)."
Citation¶
If you publish research that uses LRBinner you have to cite it as follows:
@InProceedings{wickramarachchi_et_al:LIPIcs.WABI.2021.11,
author = {Wickramarachchi, Anuradha and Lin, Yu},
title = {{LRBinner: Binning Long Reads in Metagenomics Datasets}},
booktitle = {21st International Workshop on Algorithms in Bioinformatics (WABI 2021)},
pages = {11:1--11:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-200-6},
ISSN = {1868-8969},
year = {2021},
volume = {201},
editor = {Carbone, Alessandra and El-Kebir, Mohammed},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/14364},
URN = {urn:nbn:de:0030-drops-143644},
doi = {10.4230/LIPIcs.WABI.2021.11},
annote = {Keywords: Metagenomics binning, long reads, machine learning, clustering}
}
Categories¶
biology, genomics